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The van der Waals forces for non-bonded interaction can be expressed either by the
Exponential-6 or by the Lennard-Jones(m-n) potential functions, whereby m > n. Hith-
erto a relationship exists between the Exponential-6 and the Lennard-Jones(12-6) potential
functions, with a scaling factor ξ = 13.772 at or near the equilibrium and ξ = 12.0 for long
range interaction. This paper attempts to develop relationships between Exponential-6 and a
more generalized Lennard-Jones(m-n). Analysis reveals that the relationship exists only when
n = 6 and that two sets of scaling factors (as functions of index m) applies for the relationship
between Exponential-6 and the Lennard-Jones(m-6), whereby m > 6.
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1. Introduction

In simulating molecular motion, two broad categories of interatomic interactions
are considered: (i) bonded interactions and (ii) non-bonded interactions. Whilst bonded
interactions involved interaction between neighboring atoms connected by strong co-
valent bonds (including stretching, bending and twisting), non-bonded interactions are
associated with both intramolecular and intermolecular forces. These non-bonded in-
teractions can be further classified under Coulombic interaction (due to charges), and
van der Waals interaction. The van der Waals interaction energy can be expressed in the
Exponential-6 form

UX6 = A exp(−Br)− C

r6
, (1)

where A, B and C are the Exponential-6 parameters, whilst r is the distance between
non-bonded atoms. The basis of the Exponential-6 form may well be seen from the
repulsive force [1]

Urep = A exp

(
− r
ρ

)
, (2)
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where A and ρ are parameters describing the repulsive force; and the attractive force [1]

Uatr = −1

πε0r6

[
p4

6kT
+ p

2α

2
+ 3

16
α2Ea

]
, (3)

where ε0 = vacuum permittivity, k = Boltzmann’s constant, T = absolute temperature,
p = dipole moments, α = polarizability, and Ea = characteristic of particles in their
interaction as a function of the synchronous frequency of the electron shells for both par-
ticles. The Exponential-6 potential is widely used, as can be inferred from its adoption
by various computational chemistry softwares such as EAS [2], MM2 [3], MM3 [4],
DREIDING [5], EFF [6], MOMEC [7] and MM4 [8].

Alternative to the Exponential-6 is the Lennard-Jones potential functions. The most
common of these are the Lennard-Jones(12-6) potential

ULJ(12-6) = D
[(
R

r

)12

− 2

(
R

r

)6]
, (4)

where D is the well-depth of the minimum, which occurs at the van der Waals dis-
tance r = R. The Lennard-Jones function is widely adopted because it is simpler (two
parameters instead of three) and faster to compute (elimination of an exponentiation).
The Lennard-Jones(12-6) function has been employed in the following computational
chemistry softwares: CVFF [9], CHARMM [10], GROMOS [11], TRIPOS [12], DREI-
DING [5], SHAPES [13], UFF [14], ECEPP [15], AMBER [16] and OPLS [17]. Other
forms of the Lennard-Jones potential include the Lennard-Jones(9-6) function

ULJ(9-6) = D
[

2

(
R

r

)9

− 3

(
R

r

)6]
(5)

as adopted by CFF [18], QMFF [19] and ESFF [20]; the hydrogen-bonding

ULJ(12-10) = D
[

5

(
R

r

)12

− 6

(
R

r

)10]
(6)

adopted by ECEPP [15] and AMBER [16]; and the “Buffered(14-7)” potential

UBuff(14-7) = D
(

1.07R

r + 0.07R

)7[ 1.12R7

r7 + 0.12R7
− 2

]
(7a)

developed by Halgren [21] and adopted by the MMFF software [22] for rare gas inter-
action.

To reduce the Buffered(14-7) potential function to the Lennard-Jones function, we
rewrite equation (7a) as

UBuff(14-7) = D
(
R + 0.07R

r + 0.07R

)7[
R7 + 0.012R7

r7 + 0.12R7
− 2

]
. (7b)
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Neglecting the buffered terms (0.07R and 0.12R7), equation (7b) reduces to

ULJ(14-7) = D
[(
R

r

)14

− 2

(
R

r

)7]
. (8)

In order to apply Exponential-6 parameters into computational softwares that adopt
Lennard-Jones function or vice versa, there exists a need to relate these two van der
Waals functions. Presently the relationship that exists is that between Exponential-6 and
Lennard-Jones(12-6) function, which is written in a loose form of the Exponential-6:

UX6 = D
[(

6

ξ − 6

)
exp

(
ξ

(
1− r

R

))
−

(
ξ

ξ − 6

)(
R

r

)6]
, (9)

whereupon substitution of the scaling factor ξ = 13.772 gives equal result to the
Lennard-Jones(12-6) near equilibrium, and substituting ξ = 12.0 leads to the Lennard-
Jones(12-6) function at long range. However, no relationship between other Lennard-
Jones forms, such as (9-6), (12-10) and (14-7), was made with the Exponential-6 form.
To do so, we write down the generalized Lennard-Jones potential function,

ULJ = D
[
E

(
R

r

)m
− F

(
R

r

)n]
, (10)

where the indices m and n are positive integers such that m > n. The following analysis
relates the generalized Lennard-Jones function with the Exponential-6 function, in such
a manner that the generalized relationship can be reduced to other Lennard-Jones func-
tion, including that of (12-6). Both the applicability and limitation of the generalized
relationship is herein discussed.

2. Analysis

In order to compare the Exponential function and the generalized Lennard-
Jones(m-n) potential functions, we note that both curves should have equal well depth
at the van der Waals distance,

(UX6)r=R = (ULJ)r=R. (11)

To relate both potential functions at near the equilibrium, the slopes and curvatures
are equated: (

∂UX6

∂r

)
r=R
=

(
∂ULJ

∂r

)
r=R

(12)

and (
∂2UX6

∂r2

)
r=R
=

(
∂2ULJ

∂r2

)
r=R

. (13)
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Hence substituting equations (1) and (10) into equations (11)–(13) gives

A exp(−BR)−
(
C

R6

)
= D(E − F), (14)

(BR)A exp(−BR)− 6

(
C

R6

)
= D(mE − nF) (15)

and

(BR)2A exp(−BR)− 42

(
C

R6

)
= D[

m(m+ 1)E − n(n+ 1)F
]
, (16)

respectively. At the van der Waals distance, both potential functions should be equal to
the well-depth, D:

(UvdW)r=R = −D. (17)

By definition, the slopes of both van der Waals potential functions are zero at r = R,
i.e., (

∂UvdW

∂r

)
r=R
= 0. (18)

Comparing equations (17) and (18) with equations (14) and (15), respectively, we have

E − F = −1 (19)

and

mE − nF = 0. (20)

Solving equations (19) and (20) simultaneously, the generalized Lennard-Jones’ coeffi-
cients (E and F ) can be expressed in terms of its indices (m and n) as{

E

F

}
= 1

m− n
{
n

m

}
. (21)

Equation (21) must be fulfilled if the bottom of the well-depth occurs at r = R.
Applying equation (21), equations (14)–(16) simplify to

A exp(−BR)−
(
C

R6

)
= −D, (22)

(
C

R6

)
= BR

6
A exp(−BR) (23)

and

(BR)2A exp(−BR)− 42

(
C

R6

)
= mnD, (24)
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respectively. Equation (24) implies that a similar van der Waals interaction, expressed in
different forms of Lennard-Jones functions, will give equal curvature near the equilib-
rium point as long as (i) the coefficients (E and F ) are expressed in terms of the indices
(m and n) as described in equation (21), and that (b) the product of the LJ indices, mn,
are equal. Now, substituting equation (23) into equations (22) and (24) leads to(

BR − 6

6

)
A exp(−BR) = D (25)

and

BR(BR − 7)A exp(−BR) = mnD. (26)

By eliminating the exponential term A exp(−BR), the term BR can be solved from
equations (25) and (26) to give

12ξ = (42+ ψ)±
√

1764 − 60ψ + ψ2, (27)

where ξ = BR is the scaling factor, and ψ = mn is the product of the generalized
Lennard-Jones indices. To incorporate the scaling factor into one of the van der Waals
potential function, we rewrite equation (1) as

UX6 = A exp

[
−ξr
R

]
− C

R6

(
R

r

)6

(28)

and equation (25) as

A = D
(

6

ξ − 6

)
exp(ξ). (29)

Substituting equation (29) into (23), we have

C

R6
= D

(
ξ

ξ − 6

)
. (30)

Therefore, substituting equations (29) and (30) into (28) leads back to equation (9).
As such, the relationship between the Exponential-6 and the generalized Lennard-
Jones(m-n) is defined by the scaling factor ξ .

3. Discussion

Perusal to the second term of equation (28) reveals that the only Lennard-
Jones(m-n) functions which can be related to the Exponential-6 form are those where
n = 6. As such, the van der Waals potential function given in equation (9) applies in
relating the Lennard-Jones(m-6) forms,

ULJ(m-6) = D
[(

6

m− 6

)(
R

r

)m
−

(
m

m− 6

)(
R

r

)6]
, (31)
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with the Exponential-6 form given in equation (1), whereby the scaling factor is simpli-
fied to

ξ = 1

2
(m+ 7)±

√
m2 − 10m+ 49, (32)

where m is an integer greater than 6. Mathematically, two solutions exist for equa-
tion (32), and that both sets of solutions increase with m. To select the actual solution
for the scaling factor, we note that, for any integer m, the lower solution is less than 6
while the upper solution is greater than 6. With reference to equations (29) and (30), for
a given positive value of well-depth D, both the Exponential-6 parameters (A and D)
will only be positive if and only if ξ > 6. Therefore the upper value,

ξ = 1

2
(m+ 7)+ 1

2

√
m2 − 10m+ 49 (33)

is selected as the actual solution to the scaling factor in relating the Exponential-6 and
the Lennard-Jones(m-6) potential functions. Substituting m = 12 and m = 9 into
equation (33) gives the short range scaling factor for relating the Exponential-6 potential
with LJ(12-6) and LJ(9-6) as ξ = 13.722 and ξ = 11.162, respectively. Substituting
ξ = m into the Exponential-6 form of equation (9), we recover the Lennard-Jones(m-6)
form. Hence substituting ξ = 12 and ξ = 9 into equation (9) leads to equations (4)
and (5), respectively, for long range.

4. Conclusions and recommendation

A relationship between the parameters of the Exponential-6 function and a gen-
eralized Lennard-Jones(m-n) function has been attempted, and shown to be achievable
only when n = 6. The previously known relationship given in equation (9), for relating
Exponential-6 with Lennard-Jones(12-6), remains applicable for relating Exponential-6
with Lennard-Jones(m-6) whereby m > 6. However, it can be seen that the scaling fac-
tor (ξ ) is a function of the index m, and that the previously known ξ = 13.772 (short
range) for Lennard-Jones(12-6) is a subset that can be obtained from the generalized
function given in equation (33). Furthermore, the previously known ξ = 12.0 (long
range) is a subset of the relation ξ = m. In view of the more generalized scaling factor,
being a function of index m, we hereby term the generalized scaling factor described in
equation (33) as the scaling function.

A set of relationships between both the van der Waals potential functions are useful
as this allows a fitted Exponential-6 curve to be directly converted into the Lennard-
Jones function, and vice versa. Moreover, available parametric data from Exponential-6
function can be quickly converted into Lennard-Jones(m-6) parameters, and vice versa,
for immediate computational application.

The present parametric connection for van der Waals potential functions would
complement recent parametric relations amongst force fields for bond-torsion [23],
bond-bending [24] and bond-stretching [25], and therefore may pave a way for a soft-
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ware that is capable for relating and converting computational chemistry softwares that
adopt different combinations of molecular potential functions.

In order to obtain an exponential form of the Lennard-Jones(m-n) whereby n can be
any integer not necessarily confined to n = 6, it is hereby suggested that the exponential
form can be expressed as an Exponential-n function

UXn = A exp(−Br)− C

rn
. (34)

The more generalized form given in equation (34), as compared to equation (1), would
free up the constraint in extracting the exponential form from the Lennard-Jones func-
tions pertaining to the hydrogen bonding (n = 10), rare gas interaction (n = 7), or any
other Lennard-Jones forms whereby n is not necessarily equals to 6.
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